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In 1959, Barenblatt (PMM 23, no. 3, p. 434) published a famous paper
that laid the foundation of the cohesive crack model and thus revolutionized
fracture mechanics. Building on Zheltov and Khristianovich’s 1955 observa-
tion (Izvestia ANS Otd. Tekh. Nauk no. 11) that the opposite faces of the
crack must have a smooth closing at the crack tip (i.e., become asymptoti-
cally parallel at the crack tip), so as to prevent infinite strain, Barenblatt in
1959 introduced two crucial hypotheses which still underlie nonlinear frac-
ture mechanics today: 1) the requirement of smooth closing implies that,
near the tip, cohesive stresses of a certain magnitude must be transmitted
between the crack faces, and 2) the cohesive stress is a function of the crack
opening width, defined by a law that is a material property. Using Sneddon’s
(Fourier Transforms, 1951 book) axisymmetric solution for the distribution
of opening displacements along the radius of a circular (penny-shaped) crack
in an infinite isotropic elastic solid, Barenblatt calculated the magnitude of
cohesive stresses required to counteract the load and achieve the required
smooth closing. This is obviously equivalent to requiring that the stress in-
tensity factors (or energy release rates with respect to crack length) due to
load and to the cohesive stresses must cancel each other (which is the way
the requirement is stated in subsequent literature).

To make an analytical solution feasible, Barenblatt in 1959 further in-
troduced the simplifying hypothesis that, near the crack tip, the cohesive
stress distribution along the crack can also be treated as a material prop-
erty. Later, once computer analysis of crack propagation became feasible, a
unique softening law relating the cohesive stress to the cross-crack relative
displacement became the standard hypothesis, which is, for a small crack in a
large structure, equivalent to Barenblatt’s 1959 hypothesis. In 1964, Baren-
blatt (PMM 28, no.4, p. 630) extended his model to include micro-defects or
microcracking; in 1966 to kinetics of quasistatic crack growth and long-time
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strength (with Entov and Salganik, in Russian in Mekhanika Tverdogo Tela
no. 5, p. 53, no. 6, p. 40). The formulation of the cohesive crack model was
completed in 1968 by Rice (in Fracture, Liebowitz, ed., Acad. Press, Vol.
2) who showed, via his path-independent J-integral (published in the same
volume), that the flux of energy into the crack tip, representing the energy
release rate (with respect to crack length) from an elastic structure, is equal
to the work of cohesive stress on the crack opening displacement during crack
propagation. This work, equal to the area under the curve of the softening
law, represents the fracture energy—a basic material constant which was in-
troduced in 1921 by Griffith (Phil. T. Roy. Soc.A, 221, p. 163) and was
shown in 1958 by Irwin (in Fracture, Flügge, ed., Springer, p. 551) to be
uniquely related to the critical stress intensity factor, or fracture toughness.

Barenblatt’s 1959 paper in PMM was published in Russian. Despite its
prompt translation into English in the U.S., it was only in 1962 that his
follow-up, more detailed, paper in English (Adv. in Appl. Mech. 7, p.
55), gained a world-wide attention. Meanwhile, Dugdale in 1960 (JMPS 8,
p. 100) published an apparently similar paper dealing with cracks (or, in his
words, slits) that have a large plastic zone in front. The uniformly distributed
stresses of plastic yielding ahead of the crack tip have a similar effect on
crack closing as the nonuniform cohesive stresses. They also eliminate the
singularity of stress and strain at the crack tip, cause the total stress intensity
factor due to load to vanish and thus ensure smooth crack-tip closing. Most
subsequent authors, however, did not cite Barenblatt’s original 1959 paper
in Russian, being unaware of its English translation. In their superficial
comments on the cohesive crack model origin, they cited only Dugdale’s 1960
and Barenblatt’s second (1962) paper, in English. This gave the erroneous
impression that Barenblatt was not the first.

However, even if Barenblatt’s 1959 paper in Russian did not exist, his
1962 paper alone sufficed to make him the creator of the cohesive crack
model. Perfunctory readers did not realize that Dugdale’s 1960 paper dealt
with a different problem—the plastic deformation near the tip of a sharp
slit, and not the propagation of a cohesive crack with progressive softening.
His plastic yielding zone could extend indefinitely without any actual crack
growth. Dugdale’s model included neither softening nor a fracture criterion
and, in fact, was called the “strip yield model” (see, e.g., Tada, Paris, Irwin
handbook, 1985). It is interesting to note, though, that if a cut-off is added
to Dugdale’s model so that the material would suddenly break at a certain
critical relative displacement, the model would become equivalent to a spe-
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cial limiting case of cohesive crack model in which the stress-displacement
function is rectangular, terminating with a sudden stress drop. While such a
function is not realistic, it has the advantage of allowing instructive analyti-
cal solutions in some interesting cases (which is why it was repeatedly used
in Bažant and Planas’s 1998 textbook Fracture and Size Effect, CRC Press).

A rigorous comparison to Griffith’s (1921) original model of brittle frac-
ture was presented in 1967 by Willis (JMPS 15, p. 151), who also showed
(ibid. p. 157) the correct extension of Barenblatt’s concept to dynamic crack
propagation. In 1976, Hillerborg et al. (Cem. Concr. Res. 6, p. 773),
using the name“fictitious crack model”, proposed that a cohesive (or ficti-
tious) crack can initiate in concrete without any pre-existing crack or notch
wherever the tensile strength limit is reached (this recognized the fact that,
unlike metals, the concept of crack nucleation is meaningless for concrete
since the material is full of densely spaced cracks to begin with, at all scales
from nano to macro). Subsequently, Petersson (Dissertation, Lund Inst Tech.
1981), using this version of cohesive crack model, developed an effective frac-
ture simulation algorithm for concrete structures in which the crack and its
fracture process zone are not small compared to the structure size. In this
context, it was also shown that equally good, and often superior, simulations
of fracture in concrete or geotechnical structures can be obtained with the
crack band model (Bažant and Oh, Mat. & Struct. 16, p. 155), which
is, for vanishing width, asymptotically equivalent to Barenblatt’s cohesive
crack model. In many cases of large structures, the crack band gives nearly
the same energy release rate, while it can directly capture the finiteness of
the fracture process zone width, whose main role is to limit parallel crack
spacing. Thanks to using a tensorial damage constitutive model, the crack
band has the advantage of being able to reproduce the effect of high crack-
parallel compression on the apparent opening-mode fracture energy, which
can be quite significant in quasibrittle materials such as concrete, rock and
fiber composites (H. Nguyen et al., PNAS June 2020, and JAM-ASME, July
2020).

Barenblatt’s works on fracture mechanics are distinguished by clarity,
logic of reasoning and accuracy, and are devoid of unnecessary mathemati-
cal formalism. He returned to fracture mechanics repeatedly and provided a
number of innovative inspirational ideas and solutions, whose hallmark is the
scaling laws. In particular, the following deserves to be pointed out: • In
his early work in mid 1950s, he clarified some mechanics problems in the rock
burst of deep mining stopes, and in the hydraulic fracturing of oil-bearing
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strata (Barenblatt and Khristianovich 1955, Izvestia ANS, No. 11.; Baren-
blatt 1956, PMM 20, No. 3). • Barenblatt formulated useful scaling laws
for fatigue crack growth. In his insightful study of subcritical fatigue crack
growth with Botvina in 1981 (Fatigue of Eng. Mat. & Str. 3, p. 193), he
demonstrated an application of his idea of incomplete similarity (Barenblatt,
ibid., 1979) in the linear cyclic growth range. He and Botvina showed that,
in metals, the Paris law exponent varies linearly with the square root of the
ratio of structure size to the plastic zone size, the latter being proportional
to Irwin’s characteristic length. They supported this conclusion by analy-
sis of previously published data. Interestingly, this conclusion is similar to
what was observed in tests of fatigue fracture growth in concrete or rock
(Bažant & Xu 1991, ACI Mat. J. 88 (4) p. 390; Kirane & Bažant, IJ Fatigue
70, 2014, p. 93; ibid. 83, 2016, 209–220; Mech. Res. Com 2015, 68, p.
60), except that the size effect on the exponent was not detected, probably
due to insufficient size range and higher scatter in concrete testing. • Aside
from various applications in fluid mechanics, Barenblatt’s concept of interme-
diate asymptotics (Similarity, self-similarity and intermediate asymptotics,
Consultants Bureau 1979) has been invoked in Bažant’s 2005 book (Scaling
of Structural Strength, Elsevier 2005) and paper (PNAS 2004, p. 13400)
to support the Types I and II size effect laws of quasibrittle fracture. •
Barenblatt pointed out already in his 1962 paper that, in an atomic lattice
on the nanoscale, cracks must propagate in discrete jumps, as a series of
instabilities, later called snap-through instabilities. Consequently, the stress-
displacement relation of a cohesive crack may deviate, even on the nanoscale,
from the equilibrium path and must be irreversible. • Recently, with Mon-
teiro and Rycroft (PNAS 2012), his collaborators in Berkeley, Barenblatt
focused again on nanoscale fracture growth. Returning to his previous idea
of nanoscale dynamic snap-through jumps in crack length, he showed that,
aside from fracture energy Gf and material tensile strength ft, the nanoscale
fracture in an atomic lattice must depend on a third material property, the
mass density ρ, through a nanoscale characteristic length λ = [h(ρE)−1/2]1/4

(where E is the nanoscale Young’s modulus, and h is Planck’s constant).
What must have helped Barenblatt to come up with transformative ad-

vances was that the Russian school of mechanics, to which he belonged, was
world-class in the 1950s. His 1959 transformational paper spurred great tech-
nological progress. His contributions to fracture mechanics contributed to
safety, efficiency and durability of engineering structures. Cohesive fracture
mechanics became important for both metallic and quasibrittle structures.
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Applications to the latter include: 1) geomechanics, particularly hydraulic
fracturing for oil or gas extraction; 2) coarse-grain or toughened ceramics; 3)
polymers and polymer-fiber composites (particularly the design of modern
composite airframes); 4) concrete structures (which has finally been recog-
nized by American Concrete Institute whose 2019 design code is the first one
based on fracture mechanics, underlying its 2019 design specifications for the
size effect in shear strength of beams and slabs); 5) floating sea ice plates
(whose load capacity and forces applied by moving ice on the ocean platforms
must consider the size effect of cohesive fracture); 6) fracture of bones and
other biomaterials (in which cohesive fracture generates size effect); 7) frac-
ture of brittle materials (even metallic thin films) on the micrometer scale
at which they become quasibrittle and exhibit deterministic size effect; etc.
However, it must be noted that, in the light of recent results (H. Nguyen et
al., 2020, ibid.), for quasibrittle materials the cohesive crack model requires a
significant correction when there is a significant crack-parallel stress, in-plane
or out-of-plane, in order to take into account the effect of a wide fracture pro-
cess zone.

Commenting on Barenblatt’s impact, it is timely to mention also an en-
vironmental connotation. Cracking and its localization in concrete, whose
correct prediction must take into account cohesive stress effects, governs the
ingress of moisture with corrosive agents into concrete structures, which un-
dermines durability and thus has enormous environmental consequences. It
is known (though widely ignored) that, despite the great recent progress in
reducing the cement content of modern concretes, the worldwide production
of cement and concrete is on the verge of greatly exceeding the CO2 emissions
from all the cars and trucks in the world. One way to mitigate this problem
in the long run would be to double the lifetimes of concrete structures and
pavements. This goal would, of course, depend partly on realistic fracture
assessments, which are facilitated by Barenblatt’s ideas.
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